A NOTE ON TOPOLOGICAL DEGREE THEORY
FOR HOLOMORPHIC MAPS'

BY

PAUL H. RABINOWITZ

ABSTRACT

Using degree theory, an elementary topological proof is given of some well-
known results in the theory of several complex variables. In particular 't is
shown that a compact analytic variety consists of finitely many points.

Let Q < = A < C" where Q and A are open. Suppose f: A — C" is holomorphic
and b e C" with b ¢ f(0Q) (where dQ denotes the boundary of Q). Choosing a basis
for C", a basis for B?" can be obtained from it in a natural fashion. This identi-
fication induces an isomorphism between Q and a bounded open set A = R?",
between f and a mapping ¢ continuous from A to R?", and between b and e R
with B¢ ¢(0A). The Brouwer degree of the map ¢ relative to the set A and the
point 8 is therefore defined; it is denoted in this paper by d(¢, A, B). This function
is integer valued where defined. See, for example, [9, Chap. 3] or [5] for the
definition of Brouwer degree and an elementary analytical development of its
properties. The degree of f relative to the set Q and the point b is then defined as
equal to d(¢,A, B) and is also denoted by d(f,Q, b).

The properties of topological degree for complex analytic mappings in infinite-
dimensional Banach spaces as well as C* have been studied by Cronin [3] and
Schwartz [8]. A more general class of mappings of analytic type has been treated
by Browder [1]. These authors establish in particular (e.g., [1, Th. 1] or [4, Th. 3]).

LemMa 1. Let f,Q, b be as above. Then
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() d(f,Q,b) 20,

(i) d(f,Q,b)> 0 if and only if bef(Q).

Thus the topological degree for holomorphic maps is non-negative and in fact is
positive if bef(Q). To prove Lemma 1, only elementary facts about analytic
functions are required, in particular:

(@) Jux) = |J f(z)lz = 0 where J(z) denotes the Jacobian determinant of f
evaluated at ze C" and Jy(x) is the Jacobian determinant of ¢ evaluated at the
corresponding x € R*";

(i) J ) +e(2) # O for all 0 # ¢ sufficiently small.

For the further development of the theory of degree in [8] and [1], use is made
of a well-known result on analytic varieties (e.g., [7, Th. 7] or [4, Chap. 3, Cor.
B17]) which states that a compact analytic variety consists of finitely many points.
Due to the way in which the argument in [8] is arranged, [7, Th. 7] is already used
in the proof of Lemma 1.

The purpose of this note is to show that Lemma 1 can be employed to prove
the above result on analytic varieties in a simple topological fashion. In addition,
an elementary proof will be given of the fact that d(f,Q, b) = 1 if and only if there
is a unique { € Q such that f({) = b and J/({) # 0. This has already been shown
by Schwartz [8], but his argument is based on a result of Cronin [3] which uses
some deep properties of homogeneous polynomials. Our argument by-passes the
need for such powerful machinery.

The author acknowledges with thanks helpful conversations with Bent
Birkeland, Henrik Stetkaer, and in particular Andrew Browder.

We begin with the following improvement of Part (ii) of Lemma 1.

THEOREM 2. Let f: A— C" where A< C" is open and f is holomorphic.
Suppose Q< < A is open, beC" and b¢f(éQ). If d(f,Q,b) =k, then
f "Y(b) NQ contains at most k distinct points.

ProoF. The proof is by induction on k. Suppose k=0. Then by (ii) of Lemma 1,
f~1(b) NQ = ¢ and the result is trivially true. Next suppose the theorem has
been established for k — 1 and d(f,Q, b) = k > 0. If the result is not true, we can
find k + 1 distinct points {y,-+,, in f~}(b) NQ. We can assume b = 0 and
{o = 0. The degree is unaffected by the choice of a basis for C" [9, Prop. 3.32]
and it is not difficult to see that by an appropriate such choice all components ¢,
of {; can be made nonzero, 1 S m<n, 1<j < k. Define a new analytic function
g(z) by
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gm(z) = fm(z) +e ﬁ (Zm - ij) for 1 é m é H.
=0

Then g({;) = 0, 0 £ j < k. For ¢ sufficiently small, d(f,Q,0) = d(g,9,0) [9, Th.
3.16 (3)). Moreover J,(0) is a polynomial in ¢ whose leading coefficient is

n k

0" 11 T1 Cm#0
m=1 j=1

Thus we can choose ¢ near zero so that J (0) # 0. Therefore z = 0 is an isolated
zero of g and by the additive property of degree [9, Th. 3.16 (5)], d(g,%Q,0)
= d(g, B5(0),0) + d(g,Q — B0),0) where

By(w) = {zeC"l |z —w] ( 21 Izj—wjlz)" < 6’

and 0 < § is chosen small enough so that By(0) = Q and 0 is the unique zero of g
in B4(0). Hence by (ji) of Lemma 1, k 2 1 + d(g, Q ~ B40),0) or d(g, Q — B,0),0)
= p £ k — 1. By the induction hypothesis, g has at most k — 1 distinct zeroes in
Q- EXO_). But g({;) = 0, 1 =j < k with the {; distinct. Thus we have a con-
tradiction and the proof is complete.

COROLLARY 2.1. Let f,Q,b be as in Theorem 2. If d(f,Q,b)= 1, there is a
unique {€Q such that f({) = b.

Proor. Immediate from (ii) of Lemma 1 and Theorem 2.
Next we obtain the result on analytic varieties.

COROLLARY 2.2. Let f, A, b be as in Theorem 2. If f~'(b) is compact in A,
then f~(b) consists of finitely many points.

Proor. Since f~!(b) is compact in 4, there exists a bounded open set Q = = A4
with f~!(b) = Q. Hence d(f,Q,b) is defined and equals, e.g., k. By Theorem 2,
f~(b) consists of at most k points.

COROLLARY 2.3. Let f and A be as in Theorem 2. If f({)=b for some (€ A
and % is the component of f~'(b) to which { belongs, then € = {} or € meets
every neighborhood of 0A (that is, € has a nonempty intersection with every
neighborhood of 0A).

Proor. If not, it is easy to find a bounded open set Q = = 4 with € = Q and
f # b on Q. Then by Corollary 2.2 f~!(b) N Q consists of finitely many points,
contradicting the fact that {ef~'(b) NQ is not an isolated solution of f = b.
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REMARK. Actually the result for varieties does not require both the domain
and range of f to be subsets of C".

CoRrOLLARY 2.4. Suppose h: A— C™ where A <= C" is open,n>m, and h is
holomorphic. If ¢ = W{) for some { € A, the component € of h™'(c) to which {
belongs meets every neighborhood of 0A.

ProoF. We can assume ¢ =0 = {. Define h(z) =0, m+1<j<n and
hz) = (hy(2), -, h(2)). Note that h='(0,) = A~'(0,) where we have used the
subscripts m and n to distinguish between 0 as an element of C™ and C* If the
corollary is not true, O is an isolated zero of 4. Choose 8 > 0 so that 0 is the
unique solution of A = 0 in B,0) = A. Define gi(2) = hj2) +ez;, 1£j<m,
and g(z) = 0,m + 1 <j < n. For ¢ sufficiently small, d(h, B,(0),0) = d(g, B,(0), 0)
[3, Th. 3.16 (3)]. Hence by Theorem 2, z = 0 is an isolated zero of g. Consider the
Jacobian determinant of (6g,(0)/dz,), 1 £ j, k < m. It is a polynomial in ¢ with
leading coefficient 1 and therefore does not vanish for 0 # ¢ small. By the analytic
version of the implicit function theorem, there exist functions ¢z, -, z,),
1 £j = m, analytic near Z = (2,,4,,-",2,) = 0€ C"~" such that ¢,0) = 0 and
9i{(1(2), -+, du(2), 2) = 0 near Z = 0. But then z = 0 is not an isolated zero for
g and we have a contradiction.

Next a sharper version of Corollary 2.1 will be obtained.

THEOREM. 3. Let f: A— C" where A< C" is open and f is holomorphic.
Suppose Q = < Aisopen, beC" and b ¢ f(0Q). Then d(f,Q,b) = 1 if and only if

(i) there exists a unique { € Q with f({) = b and

(i) JAO #0.

Proor. The sufficiency is an immediate consequence of the definition of degree
[9]. Conversely if d(f,Q,b) = 1, Corollary 2.1 implies (i). We can assume b = 0
= {. Suppose that J«(0) = 0. Then the differential of f at 0, f'(0) has a zero
eigenvalue. Using [9, Th. 3.16 (3)] again to perturb f slightly, if necessary, we can
assume 0 is a simple eigenvalue of f'(0). Choosing an appropriate basis in C*, f
has the form f(z) = (f(2).f(2)) where f(z) = (fy(2), -, o-1(D)s 2z = (4,2,),
£ =(zy,,2,-1), and f(z) = L+ 0(| z|?), £,(z) = 0(|z|*) at z = 0 with L a
nonsingular (n—1) x (n— 1) matrix. Moreover by a final application of [9, Th.
3.16 (3)], we can assume

9’£(0)

625 = 2a#0.
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Using the usual multi-index notation, for z near 0 for example, for |z[ <p

= X [z, 1sjsn

lejz1

This implies
Ifn(z) - | IZ-Z fna‘zal = Mll z |3

for |z| < p where M, > 0 is a constant. If z also lies in the set {| ] S |z},

ez az| = | 2 o= ezt - afof 2

provided that 0 < a < o, where «, is sufficiently small compared to min (1, | a I)
and p < |a|/4M,. Similarly |f(z) — Lz| £ M,|z|? for |z| < p. If z also lies in
the set {lz,,l §M|2|},

@2 L] = M| P 2 My 2] = by 2 2 22 ¢

provided that p < M, /4(1 + M)M,. Choosing, for example, o = ay/2 and
M = 2 Juq, the two sets {| | < a|z,|} and {|z,| < M| 2|} cover €. Note that if

aI M3
(M, 41+ M)M,y

|z|§p=min

and f is replaced by
fa) =i+t T f2° az? + (f(2) — az?))
jo122

where f, = (fig»***»fu—1.s) the above estimates are uniform for ¢ € [0, 1]. Therefore
0¢ f(0B,(0)) for all te[0,1] and by the homotopy invariance of degree [9, Th.
3.16 ()], d(£,9Q,0) = d(f, B,(0),0) = d(f,, B,(0),0) for all 1t[0,1]. For r =0,
flz) = (L£,az}) = (8(2),9.(2,)) so the first n — 1 components of f, are not
linked to the last component. Since z = 0 is an isolated zero of f,, by [9, Th. 3.16
(6), (D], d(fo,B,0),0) = d((§,9,), B, x B, (0, 0)) = d(§, B,0)d(g,, B;,0) where
B,={teC"'| |£]| <r} and B, = {z,eC| |z,| < s} and r,s > 0 are arbitrary.
L is nonsingular; therefore the definition of degree implies d(g, B,,0) = 1. For
0 # ceC near 0, d(g,, B,,0) = d(g,, B,,¢) [9, Th. 3.16 (4)]. The equation g,(z,)
= ¢ # 0 has two distinct solutions in B, with g, # 0 at the solutions so the

definition of degree implies d(g,, B,,c) = 2. Since d(f,Q,0) =1, we have a
contradiction and the proof is complete.
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ReMARK. Theorem 3 implies the index of an isolated solution { of f=b is
greater than or equal to 2 if J({) = 0. This is a special case of a result of Cronin
[3]-

An interesting consequence of Theorem 3 is a result developed by G. R. Clements
[2]. (See also [6, Chap. 2, Sec. 19, 20].) (Indeed Clements’s result can be used to
give a shorter proof of Theorem 3. However we preferred to give an independent
and elementary topological argument.)

CoROLLARY 3.1. Let f and A be as in Theorem 3. Then f is 1-1 in a neigh-
borhood of z = { if and only if J ({) # 0.

Proor. The sufficiency is obvious. Thus suppose that f is 1-1 near z = {.
By Lemma 1, (ii) and [9, Theorem 3.16 (4)], for ¢ sufficiently small,

0 < d(f, B{0),f (D)) = d(f, Bi(), b)

for all b near f({). By Sard’s theorem [10] the image of the set of points in B,(()
at which J, vanishes has measure 0. Therefore we can find b near f({) such that
F-1(b) N Bs) = {2} and J (%) # 0. Consequently by the definition of degree,
d(f, B(), b) = 1 and the result now follows from Theorem 3.

Another easy corollary of Theorem 3 is the following improvement of [1, Theo-
rem 4(c)].

COROLLARY 3.2. Let f,Q, b be as in Theorem 3 and let K denote the component
of C"— f(0Q) to which b belongs. Then d(f,Q,b) =1 if and only if f is a
bianalytic map of f~'(K) NQ onto K.

Proor. Immediate from Theorem 3 and the fact that d(f,Q, b) is constant on
components of C" — f(0Q).

To conclude we note that simple proofs of the analogs of our results for mappings
of the form ®(u) = u — T(u) where T is a compact analytic map of an infinite
dimensional space into itself follow by using Schwartz [8] reduction of the
infinite dimensional case to that for C".
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